

SAND97-2250 Distribution
Unlimited Release Category UC-706

Printed February 1998

Integrated Analysis Environment for High Impact Systems

Marcus Martinez
Electromechanical Engineering Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-0329

James Davis, Jason Scott, Janos Sztipanovits, Gabor Karsai
Measurement and Computing Systems Laboratory

Vanderbilt University
Nashville, TN 37235

Abstract

Modeling and analysis of high consequence, high assurance systems requires special modeling
considerations. System safety and reliability information must be captured in the models. Previously,
high consequence systems were modeled using separate, disjoint models for safety, reliability, and
security. The MultiGraph Architecture facilitates the implementation of a model integrated system
for modeling and analysis of high assurance systems. Model integrated computing allows an
integrated modeling technique to be applied to high consequence systems. Among the tools used for
analyzing safety and reliability are a behavioral simulator and an automatic fault tree generation and
analysis tool. Symbolic model checking techniques are used to efficiently investigate the system
models. A method for converting finite state machine models to ordered binary decision diagrams
allows the application of symbolic model checking routines to the integrated system models. This
integrated approach to modeling and analysis of high consequence systems ensures consistency
between the models and the different analysis tools.

Introduction
Safe and reliable operation is a primary goal in the

design of high consequence systems. This category of
systems covers a wide range of systems, from nuclear
weapons to chemical plants, where system malfunctions
under normal, abnormal, and malevolent, environments
may have catastrophic consequences. High
consequence systems typically have the following
characteristics:

� The systems are complex and heterogeneous.
Safety and reliability are system-level properties.

� The systems are reactive; they are in continuous
interaction with their environment.

� Dynamics is an essential characteristic of system
behavior.
Safety analysis methods originated in the early

ICBM-based weapon systems [1]. During this period
engineers first recognized that complex, system-level
interactions, and cascading effects are the primary
sources of safety hazards. The goal of safety analysis
is to answer the following question: Is there any
normal or abnormal system input or fault conditions
under which the system is able to produce behaviors
that are considered to be safety hazards? Safety
analysis focuses on abnormal behaviors that must be
avoided or prevented by safe design (inherently safe
systems) or active safety control mechanisms. A
frequently used technique in safety analysis is Failure
Modes and Effects Analysis (FMEA). The FMEA
analysis utilizes a fault propagation model with the
objective of investigating component failures.

Reliability analysis is a different, but strongly
related, aspect of system design. The primary question
to be answered by reliability analysis is the following:
What is the probability of losing a required function as
a result of component failures? Reliability analysis
typically uses physical component models
characterized by failure rate statistics. The goal of the
analysis is to calculate system-level failure rates for
selected functionalities. One of the important methods
in reliability analysis is based on fault tree models of
systems. Fault trees capture the relationship between a
'top event' (a critical functional failure in the system
operation) and a combination of component faults.

Fault diagnosability analysis is a third strongly
related element in the design of high impact systems.
The question to be answered is the following: Does the
system’s design include an adequate number of sensors
and built-in-tests to guarantee the required level of
fault detectability, distinguishability and
predictability? Diagnosability analysis is based on
causal network or fault propagation models that are
augmented with observation models.

Our previous experience in the development and
testing of real-time diagnostic and monitoring systems
for aerospace [2][3], electric utility [4] and chemical
process applications [5], and our current work in the
safety, reliability and fault analysis of nuclear weapon
system surety components have shown that the
selection of suitable modeling paradigms plays a
critical role in obtaining practical, usable answers
during analysis. Traditionally, safety, reliability and
fault analysis tools use different modeling approaches
and different analysis methods. Since the questions
which need to be addressed refer to the same
underlying system, the models cannot be, and are not,
independent. The consistency among the models and
consequently the analysis results is not guaranteed due
to the lack of any formal description of relationships
among the different models. Naturally, this lack of
consistency makes the objective evaluation of design
tradeoffs impossible.

This paper discusses a new approach for integrated
safety, reliability and diagnosability analysis using
Model-Integrated Computing principles and tools. The
essence of the approach is to perform system modeling
using a domain-specific, multiple-aspect modeling
environment that allows the integrated, consistent
representation of system models. This integrated model
is translated into the input languages of analysis tools,
thereby maintaining the consistency among the tool-
specific models. An important element of the method
used is the introduction of relational models in system
representation and the application of Ordered Binary
Decision Diagrams (OBDD) [6] for representing,
transforming and analyzing the models. The benefits of
using OBDD representations and manipulations are a
significant improvement in scalability and an
opportunity for using discretized models for very large-
scale problem domains.

Background

Model-Integrated Computing

In Model-integrated computing, integrated,
multiple-view, domain-specific models capture
information relevant to the system under design. Models
explicitly represent the designer’s understanding of an
entire system, including the information-processing
architecture, physical architecture, and operating
environment. Integrated modeling explicitly represents
dependencies and constraints among various modeling
views.

The Multigraph Architecture (MGA) is an
infrastructure for model-integrated computing and is

described in detail elsewhere. [7] A typical model-
integrated tool configuration is shown in Figure 1.

GUI

VMB-CLIENT

CORBA

ODMG’93

DBIF

CONST. MAN.

CORE

SCHEMA

OODB

META-VMB

DATABASE
ACCESS

MANAGER

DBIF

TRANSLATOR

MODEL INTERP.

META-
PROGRAMMABLE
MODEL SERVER

ANALYSIS ALG.

GUIANALYSIS
TOOL

ANALYSIS
MODEL.

DBIF

TRANSLATOR

MODEL INTERP.

GUI

ANALYSIS ALG.

EXECUTABLE
MODEL.

SYNTHESIZED
APPLICATION

ANALYSIS ALG.

GUIANALYSIS
TOOL

ANALYSIS
MODEL.

DBIF

TRANSLATOR

MODEL INTERP.

Figure 1: Model-Integrated tool environment in
the MGA framework

The integrated environment includes Modeling
Tools, Integrated Model Database, Analysis Tools, and
Application Synthesis Tools. The Analysis Tools work
with tool-specific analysis models; the applications are
specified in terms of executable models. The modeling
paradigm of the analysis tools and the executable
models are domain independent. In a given domain, the
relevant information about the design artifact is
captured by a multiple-view, domain specific modeling
paradigm. In MGA, the modeling paradigm is
described by a meta-language. The meta-language
representation of the modeling paradigm is used to
generate components of a Metaprogrammable Model
Server, and a Metaprogrammable Visual Model
Builder (META-VMB). Key components of the model
server are the “Model Interpreters”. The role of the
Model Interpreters is to translate the domain specific
model into the analysis models for the tools and the
executable models of applications to be synthesized.
This architecture allows that the analysis and synthesis
tools to share design information that is common
without requiring that the tools use the same modeling
paradigm.

An integrated tool environment is built in the
following steps using the MGA infrastructure:
1. Systems and domain experts conduct domain

analysis and specify an integrated modeling
paradigm, which can capture key aspects of the
system. The modeling paradigm is comprised of
the concepts, relationships, model composition
principles and constraints that are specific to the
domain.

2. Using the formal representation of modeling
paradigms, systems and domain experts specify
and create a domain specific model building,

model analysis, and software/system synthesis
(model integrated program synthesis) environment.
The environment includes reusable domain
specific components, general building blocks,
domain specific model analysis tools, and software
synthesis tools. Completion of this step is
supported by MGA meta-tools.

3. Domain and application engineers build integrated,
multiple view models of systems to be designed
and implemented. The multiple view models
typically include requirement and design models,
are based on formally specified semantics, and
support performance, safety and reliability analysis
processes.

4. Domain and application engineers analyze the
models according to the nature and needs of the
domain. The analysis is typically supported by
generic tools (e.g. performance analysis,
simulation, reliability analysis, safety analysis
etc.). The domain specific models are translated
into the input languages or input data structures of
the connected analysis tools. The model translation
is completed by MGA model interpreters that are
part of the modeling and model analysis
environments.

5. If necessary, the validated models are used for the
automatic synthesis of software applications.

Ordered Binary Decision Diagrams (OBDD)

Safety, reliability, and fault analysis tasks use
discrete models and operations over finite domains.
The most general difficulty in all of the analysis
techniques is the size of the state space in large-scale
systems. Combinatorial explosion is the result of the
exponential increase in the number of discrete elements
(states, hypotheses, etc.) during operations, which
sooner or later makes access to the individual elements
unfeasible. By introducing a binary encoding for the
elements, the individual elements, and sets of elements,
the relations among them can be expressed as Boolean
functions. For example, the 2100 states of a finite state
automaton can be encoded with binary variables
{s(1),…,s(100)} forming a binary state vector s. The
Boolean functions

f1[s(1),…,s(100)]=s(1)’∧s(23)∧s(99) and
f2[s(1),…,s(100)]=s(1)∧s(22)∧s(89)

represent two subsets, S1 and S2, of the 2100 states
including 297 elements each. The set S3=S1∪S2 can
be derived symbolically as the disjunction of the two
Boolean functions:

f3[s(1),…,s(100)]= f1[s(1),…,s(100)]∨
f2[s(1),…,s(100)]= s(1)’∧ s(23) ∧ s(99)∨ s(1) ∧ s(22) ∧
s(89)

without the need to enumerate and compare the
individual elements - which would be a formidable task
otherwise. In general, using Boolean function
representations, we can express operations and
algorithms in diagnosis and safety analysis in symbolic
form, by means of symbolic Boolean function
manipulations.

OBDDs provide a symbolic representation for
Boolean functions in the form of directed acyclic
graphs [6]. They are a restricted, canonical form
version of Binary Decision Diagrams (BDD) [8].
Bryant [9] described a set of algorithms that implement
operations on Boolean functions as graph algorithms on
OBDDs. Taking advantage of the efficient symbolic
manipulations, researchers have solved a wide range of
problems in hardware verification, testing, real-time
systems, and mathematical logic using OBDDs that
would have been otherwise impossible due to
combinatorial explosion. Symbolic model checking is
extensively used in hardware design (see, e.g., [10]),
and has shown to be efficient in state space sizes 10120

and beyond.

Selection of Domain-Specific Modeling
Paradigm

Safety, reliability and diagnosability analysis
algorithms work with a “model” (a suitable
representation) of the system. The level of detail in the
models is determined by the required depth of the
analyses.

1. Models for Safety and Diagnosability Analysis.
Safety and diagnosability analysis requires the
development of models that represent the
relationship between failure modes (or fault
events) of physical components and discrepancies
(or discrepancy events) in the high-level behavior
of the system. Taking into consideration of the
characteristics of the high impact system category
(complexity, dynamic behavior), we selected the
following model organization:
• The structure of the system is captured in two

independent hierarchies, forming the
Behavioral Model and the Physical Model.

• The Behavioral Model represents the system
behavior in the discrete state space in terms of
hierarchical, parallel state machines. The
Behavioral Model includes both functional
and fault behaviors by representing functional
and fault states, and transitions among these
states triggered by input, local, and fault
events. We have selected the StateChart
notation [11] for behavior modeling because

the StateChart models are expressive, scalable,
and support incremental modeling.

• The Behavioral Models are augmented with
Observation Models. The observation models
define the set of observable (instrumented)
events that can be used to perform system
diagnosis.

• The Physical Model captures the component
hierarchy of the system. The physical
components are modeled as component
assemblies and sub-assemblies. Each physical
component has a fault model view. The fault
model view lists the physically possible, and
functionally meaningful fault modes of the
components.

• The interdependencies between the Behavioral
Model and Physical Model are represented in
the form of references between these models.
The implemented-by references show the
relationship between system states and
physical components. Their role is to specify
the set of components that have impact on the
system behavior in each state. The caused-by
references link fault events in the state
transitions of the Behavioral Models to fault
modes of components. It is expected that all of
the fault modes of the components tjat are
referenced by the implemented-by references
of a state are accounted for in the outgoing
transients of the state machine.
Explicit representation of the

interdependencies between behavioral models and
physical models is a critical element of the
integrated modeling paradigm. It guides the model
builder to understand their relationship, and
enforces the systematic analysis of the effects of
the fault modes of components.

1. Models for Reliability Analysis. The analysis
environment includes a reliability analysis tool,
WinR [12], which requires modeling the systems
with a fault tree. Fault tree analysis is an analytical
technique, whereby an undesired state of the
system is specified (top event), and the system is
then analyzed in the context of its environment(s)
and operation(s) to find all credible ways in which
the undesired event can occur. The fault tree is a
graphical model of the various parallel and
sequential combinations of faults that will result in
the occurrence of the predefined undesired event.
The fault tree represents the logical relationship
between a top event and fault modes in the form of
an AND-OR tree. Utilizing the fault tree models,
and the failure rate information of the components,

the tool calculates the expected rate for the
occurrence of the selected critical system state.

The models for reliability analysis have strong
overlap with the models for safety analysis and
fault analysis. The most important relationships
regarding reliability analysis are the following:
• The top event in reliability analysis

corresponds to a transition into a selected
critical system state, which is modeled as part
of the behavioral models.

• The fault events correspond to fault modes of
components that are contained in the physical
models.

• The fault tree can be derived from the set of
all possible state trajectories that lead to the
selected critical system state. These
trajectories are fully defined by the behavioral
models.

• The failure rate of the components,
subsystems, and systems used in reliability
analysis correspond to the expected rate of the
component fault modes introduced in the
physical models.

• The conclusion is that the behavioral and
physical models contain all the information
required for reliability analysis except failure
rate data for the component fault modes.
Therefore, by extending the component fault
models with probabilistic information, the
modeling paradigm will allow safety,
diagnosability and reliability analysis from the
same model set. It is important to note that the
relationship between the fault tree models
required by the reliability analysis tool and the
behavioral models is quite complicated. These
relationships exhibit tightly-coupled behavior.
Current system level analytical techniques do
not address tightly-coupled interactions, thus
making it practically impossible to expect that
independently built behavioral models and
fault tree models will be consistent with each
other even in trivially small size systems.

Formal Model for Integrated Analysis

The role of the formal model is to give a domain
independent, mathematical specification for the
models. We will focus on the Behavioral Model, since
it plays a central role in the analysis methods. The
Physical Model is primarily descriptive, and used in
information management. The selected domain-specific
form of the Behavioral Model is the StateChart
notation. While StateCharts are convenient for building
large-scale, parallel state machine specifications, the

analysis algorithms require a formal mathematical
model, which captures the precise semantics of the
hierarchical, parallel state machines. We use Discrete
Event System (DES) models for this purpose.

The DES model of a dynamic system (system
with memory) is shown on the left side of Figure 2.

The DES model is the (X,FY ,FS ,S,ΓΓ,f,s0,Y,g)
finite state automata (see e.g. [CC93]), where:

 X is the input event set,

 FS ,FY are the sets of component faults and output
faults, both considered to be input events,

 S is the state set,

 ΓΓ(s) is a set of feasible or enabled events, defined
for all s∈S with ΓΓ (s)∈ X,

 f is a state transition function, f: X×FS×S→S’, defined
only for x∈ΓΓ(s) when the state is s,

 s0 is the initial state,

 Y is the output set, and
 g is an output function, g: X×FY×S→Y, defined only
for x∈ΓΓ(s) when the state is s.

 FS FY FI

 X Y Z

 S S’ S Y Z

 FS FY FI f g h
 X

 DES Model: Relational Model:

(X,FY ,FS ,S,ΓΓ ,f,s0,Y,g); system model f⊆ X× FS× S× S’; transition
model

f(x,fs,s,s’);
 g⊆ S× FY× X× Y; output

relation
 g(s,fy,x,y)

Figure 2: DES and relational models for
dynamic systems

Since the models need to support diagnosability
analysis, the model is divided into a System model and
an Observation model. In this approach, the component
faults are considered as additional inputs to the system.
It is also possible to model the abnormal (out of range)
inputs as elements of the X input set, creating a
‘normal’ and ‘faulty’ partition in X. In order to model
partial observations of the state trajectory
independently from the outputs of the dynamic system,
we use the h:Y×FI → Z observation model describing
the mapping between the Y outputs, FI instrumentation
faults, and the Z observations. The DES formalism also
allows the representation of non-deterministic state
machines, which is an important requirement for
modeling large-scale systems.

The right side of Figure 2 shows the equivalent
Relational Model of a dynamic system. In the relational
model, the f, g and h mappings are considered to be the
f⊆ X×FS×S×S', g⊆ X×FY×S×Y and h⊆ Y×FI×Z
relations. The significance of the relational
representation is that the models can be re-written as
Boolean functions by introducing some binary
encoding for the sets X×FS×S×S', X×FY×S×Y and
Y×FI×Z. The Boolean functions f(x,fS,s,s'), g(x,fY,s,y)
and h(y,fI,z) evaluate to true for those elements of the
sets X×FS×S×S', X×FY×S×Y and Y×FI×Z (encoded by
the Boolean vectors (x,fS,s,s'), (x,fY,s,y) and (y,fI,z)),
that are related by the f, g and h relations. The Boolean
representation of the DES model can be directly
translated into an OBDD form, allowing the symbolic
evaluation of the analysis algorithms.

Although it is not the purpose of this discussion,
it is worthwhile to note that DES (or relational) models
preserve composability and can be constructed in a
modular fashion using either component oriented
modeling approach [13] or process-oriented modeling
approach [14].

Integrated Safety, Reliability and
Diagnosability Analysis Using OBDDs

The primary difficulty in safety, diagnosability,
and reliability analysis is combinatorial explosion. For
example, the generation of a fault tree from the
behavioral model requires the exhaustive enumeration
of all possible state trajectories that may lead from an
initial state (or a set of possible initial states) to a
critical state under all fault conditions. By representing
the Behavioral Model symbolically as an OBDD, the
required calculations can be completed symbolically
without explicitly enumerating the exponential number
of alternatives.

The application of OBDD-s for the analysis
requires the following steps:

1. Mapping the Behavioral Models into OBDD-s: This
step is completed automatically. In accordance to
the general framework of the Multigraph
Architecture (MGA) (Figure 1), the StateChart
models in the Model Database are traversed by a
Model Interpreter, which selects a binary encoding
for the sates and incrementally builds up the OBDD
representation for the relational model of the
corresponding DES.

2. Safety analysis: The safety analysis tool receives the
OBDD representation of the Behavioral Model and
performs forward reachability analysis on the state
machine. Given a set of initial states S0, reachability
analysis calculates the set of reachable states S*(S0)

under all possible combination of x∈ X input event,
fS∈ FS and fI∈ FI fault events. The goal of the
safety analysis is to show that selected critical
events are not elements of the reachability set. The
reachability set is calculated symbolically, therefore
the analysis is feasible even for very large state
spaces.

3. Diagnosability analysis: The diagnosability analysis
tool receives the OBDD representation of the
Behavioral Model and Observation Model and
performs fault detectability and fault
distinguishability analysis on the state machine. An
fS∈ FS or fI∈ FI fault event is detectable if the
reachable set of observations Z*(f, S0) under all
possible combination of x∈ X input events is
nonempty. A system and its observation model
provide single-fault distinguishability, if all
possible observations are unique to the single faults.
These definitions can be extended to stronger
detectability and distinguishability conditions,
which take into consideration fault masking,
instrument faults, and multiple faults. In all cases,
the analysis algorithms are based on forward and
backward reachability analyses that are executed
symbolically.

4. Reliability analysis: As it was mentioned above, the
reliability analysis tool, WinR, expects a fault tree
that represents all possible combinations of fault
events leading to a selected top event.
Unfortunately, simple backward reachability
analysis does not provide the logic function of fault
events that must expressed in a fault tree. Instead,
the analysis algorithm generates all of the state
trajectories leading to the top event using backward
propagation, and simultaneously builds up the logic
relationship between the fault events and the top
event.

 Modeling and Analysis Tool Architecture

The Model-Integrated Safety, Reliability and
Diagnosability Analysis tool architecture is an instance
of the generic architecture of Model-Integrated
Computing Environments discussed before.
Components of the tool architecture are shown in
Figure 3. The domain specific models are built by the
Metaprogrammable Visual Model Builder, and are
stored in the Model Server. The constraints defined in
the meta-language representation of the modeling
paradigm. The capture constraints are enforced by the
Visual Model Builder and prevent the user to create
invalid models.

VISUAL MODEL
BUIDER

CORBA

ODMG’93

DBIF

CONST. MAN.

CORE

SCHEMA

OODB

META-VMB

DATABASE
ACCESS

MANAGER

DBIF

TRANSLATOR

MODEL INTERP.

META-
PROGRAMMABLE
MODEL SERVER

ANALYSIS ALG.

GUISAFETY
TOOL

FSM
MODEL (OBDD)

DBIF

TRANSLATOR

MODEL INTERP.

FAULT-TREE
GENERATOR

FSM
MODEL (OBDD)

ANALYSIS ALG.

GUIDIAGNOSABILITY
TOOL

FSM+OBS.
MODEL (OBDD)

DBIF

TRANSLATOR

MODEL INTERP.

WINR
RELIABILITY

ANALYSIS TOOL

Figure 3: Analysis tool configuration

There is a separate model interpreter for each
tool. The model interpreters traverse the domain
specific models and collect/translate the information
into the required input data structures of the tools. This
solution enables the reuse of the tools even if the
domain specific modeling paradigm is changing.

The WinR reliability analysis tool is an 'external'
component in the tool architecture. WinR is interfaced
to the integrated modeling environment through the
Fault Tree Generator module. The output of the Fault
Tree Generator is the fault tree file required by the
WinR. It is important to note that the WinR tool has a
separate model building interface, therefore the tool
can be used independently from the integrated
environment. The advantage of using WinR in the
configuration above is that the overlapping modeling
views are kept consistent by the integrated modeling
environment.

Example

The techniques described above will be
demonstrated in a simple system (Figure 4) including a
tank, a pump, and a valve. The pump is used to fill the
tank, while the valve is used to empty the tank. Only
the actual system behavior is modeled; it is assumed a
controller exists for controlling the operation of the
valve and the pump. The example assumes the pump
and the valve have the same flow rates and that the tank
is instrumented sufficiently to determine the level of
material in the tank. The controller ensures the tank is
never full or empty.

The finite state machine model for the system is
shown in part A of Figure 4. Each piece of hardware
has its behavior modeled as a separate state machine.
When the system is analyzed, these state machines are
analyzed as if they are parallel components of the same

FSM. The pump is modeled as being in one of four
states: PON, POFF, PstuckOn, and PstuckOff. These
states correspond to the pump being on, off, stuck on
(the pump cannot be turned off), and stuck off (the
pump cannot be turned on). Similarly, the valve is
modeled as being in the states Opened, Closed,
StuckOpen, and StuckClosed. The tank is modeled as
being in either nominal operating ranges (TOK) or in
failure ranges (TError). Nominal system events are:
ON, OFF, CLOSE, and OPEN. Failure events are
FailOn, FailOff, FailClose, and FailOpen which occur
when the pump fails to turn on, pump fails to turn off,
the valve fails to close or the valve fails to open.

Tank failure ranges correspond to the tank
becoming full or empty. Only when the pump is stuck
on and the valve is stuck closed can the tank become
full. Otherwise, the controller will either open the
valve or turn off the pump to keep the tank in nominal
operating ranges. Likewise, only if the pump is stuck
off and the valve is stuck open can the tank completely
empty its contents.

The event tree shown in Figure 4B is generated
from the FSM models of Figure 4A. This tree shows
all possible trajectories through the state space that
could lead to the TError state from the default system
state of {POff, VClosed, TOK}. The nodes in this tree
correspond to Boolean AND (oval nodes), Boolean OR
(diamond nodes), and the Boolean encodings for the
system events (rectangular nodes). This tree represents
the Boolean expression relating events to the selected
failure state. Symbolic techniques are used to derive
this expression automatically from the OBDD
representation of the system models. This tree
structure is not normally realized, due to its size and
the fact that all information contained in the tree is also
contained in the OBDD representing the trajectories.
Realizing the tree requires enumerating the trajectories
represented by the corresponding OBDD.

Figure 4C shows the simplified fault tree. This
tree only contains Boolean AND, Boolean OR, and the
Boolean encodings for the failure events. This tree is
generated automatically through simplification of the
event tree. Again, an OBDD is used to capture this
failure expression. The fault tree is translated in a
format analyzable by WinR.

For our example, the number of failure
trajectories is quite large compared to the size of the
system’s Behavioral models. However, the Behavioral
models actually represent a state space of 32 discrete
states if parallelism is not used in modeling. Even for
this limited example, the number of failure trajectories
would be difficult to discover manually. When
automatically simplified, the fault tree becomes
manageable. By inspection, one can determine the only

possible event sequences which can lead to the failure
state are PStuckOn and StuckClosed or PStuckOff and
StuckOpen. This is the expression captured by the
fault tree.

POn POff

Pstuck On Pstuck Off

Opened Closed

StuckOpen StuckClosed

PUMP VALVE

SYSTEM

OFF

ON

FAIL_ON
FAIL_OFF

OPEN

CLOSE

FAIL_CLOSE
 FAIL_OPEN

TANK

TOK TError

[PStuck_On & StuckClosed]

[PStuck_Off & Stuck_Open]

A. Finite State Machine Model

B. Generated State Space Trajectory Tree

Automatic Generation

C. Simplified Fault Tree

Symbolic Simplification

Figure 4: Example system model and analysis

Summary

Integrated safety, diagnosability, and reliability
analysis is a difficult problem for two primary reasons.
First, the models to be used in these analyses are not
independent from each other, therefore guaranteeing
the consistency of the analysis results is a major
concern. Second, the generally used discrete, finite
state modeling techniques require analysis methods that
are plagued by combinatorial explosion of the state and
event sets derived during the analysis. The proposed
model-integrated modeling and analysis environment
and the proposed analysis methods address both
problems. The introduction of an integrated modeling
paradigm allows the construction of models that are
domain specific, and consistent for each analysis task.
The problem of combinatorial explosion is mitigated
by the use of relational models and OBDD
representations. Although symbolic manipulations offer
tremendous advantages in the analysis of large-scale
systems, scalability remains an important issue in
analyzing these systems. The size of OBDD data
structures is sensitive to the ordering of the Boolean
variables, which indicates the need for the
development of good heuristics while mapping the
models into OBDD representations. Our experience
with the analysis of a variety of systems has shown the
feasibility of the approach.

Acknowledgements

Support for this project comes from Sandia National
Laboratories and the Defense Advanced Research
Projects Agency, Information Technology Office.
DARPA’s support has been through the Evolutionary
Design of Complex Systems project, under contract
#F30602-96-0227.

Sandia is a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin Company, for the
United States Department of Energy under Contract De-
AC04-94AL000.

References

[1] Leveson, N. : Safeware: System Safety and Computers,
Addison Wesley, New York, 1995.

[2] Misra, A., Sztipanovits, J., Underbrink, A., Carnes, R.,
Purves, B., “Diagnosability of Dynamical Systems,” Proc.
of the Third International Workshop on Principles of
Diagnosis, pp. 239-244, Rosario, WA 1992.

[3] Misra, A., Sztipanovits, J., Carnes, R., “Robust Diagnostic
System: Structural Redundancy Approach,” Proc. Of the
SPIE International Symposium on Knowledge-Based
Artificiaal Intelligent Systems in Aerospace Systems,
Orlando Florida, April 5-6, 1994.

[4] Padalkar, S., Karsai, G., Biegl, C., Sztipanovits, J., Okuda,
K., Miyasaka, N., “Real-Time Fault Diagnostics,” IEEE
Expert, pp. 75-85, June, 1991.

[5] Karsai, G., Padalkar, S., Franke, H., Sztipanovits, J., “A
Practical Method for Creating Plant Diagnostic
Applications,” Integrated Computer-Aided Engineering to
be published in 1996.

[6] Bryant, R. E., “Graph-based algorithms for Boolean
function manipulation,” IEEE Transactions on Computers,
C-35(8), 1986.

[7] Sztipanovits, et al., “MULTIGRAPH: An Architecture for
Model-Integrated Computing” Proc. of the IEEE
ICECCS’95 Ft. Lauderdale, Florida, Nov. 6-10. 1995.

[8] Lee, C. Y., “Representation of Switching Circuits by
Binary Decision Programs,” Bell System technical Journal
pp. 985-999, 1959.

[9] Bryant, R. E., “Symbolic Boolean Manipulation with
Ordered Binary Decision Diagrams”, Technical Report
CMU-CS-92-160, School of Computer Science, Carnegie
Mellon University, June 1992.

[10] Burch, J. R., Clarke, E.M., Long, D. E., “Symbolic Model
Checking for Sequential Circuit Verification,” Technical
Report, CMU-CS-93-211, Carnegie Mellon University, July
15, 1993.

[11] Harel, D., “StateCharts: A Visual Formalism For
Complex Systems”, Science of Computer Programming 8,
pp. 231-278, 1987.

[12] Sandia National Laboratories, WinR Reliability Analysis
Software, Systems Reliability Department.

[13] Sampath, M. et al., “Failure Diagnosis Using Discrete-
Event Models,” IEEE Transactions on Control Systems
Technology. Vol. 4, No. 2, pp. 105-124, March, 1996.

[14] Sztipanovits, J., Carnes, R., Misra, A., “Finite-State
Temporal Automata Modeling for Fault Diagnosis,” Proc.
Of the 9th AIAA Conference on Computing in Aerospace,
San Diego, CA, October, 1993.

DISTRIBUTION

1 MS9201 Johnson M. M. , 8114

1 MS0535 Dalton L. J. , 2615

1 MS0455 Craft R. L. , 6232

1 MS0455 Gilliom L. R. , 6232

1 MS0435 Senglaub M. E. , 2102

1 MS0405 McCulloch W. H. , 12331

1 MS0423 Kunsman D. M. , 5417

1 MS9214 Napolitano L. M. , 8130

1 MS0746 Cranwell R.M. , 6411

1 MS 0319 Randall G.T. , 2645

1 MS 0329 Plummer D. W. , 2643

10 MS 0329 Martinez M. J. , 2643

1 MS 9018 Central Technical Files, 8940-2

2 MS 0899 Technical Library Desk, 4916

2 MS 0619 Review and Approval Desk, 12690
For DOE/OSTI

	Abstract
	Introduction
	Background
	Model-Integrated Computing
	Ordered Binary Decision Diagrams (OBDD)
	Selection of Domain-Specific Modeling Paradigm
	Formal Model for Integrated Analysis
	Integrated Safety, Reliability and Diagnosability Analysis Using OBDDs
	Modeling and Analysis Tool Architecture
	Summary
	References
	DISTRIBUTION

